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Abstract. We present a novel method for the solution of the diffusion equation on a composite AMR
mesh. This approach is suitable for including diffusion based physics modules to hydrocodes that support
ALE and AMR capabilities. To illustrate, we proffer our implementations of diffusion based radiation
transport and heat conduction in a hydrocode called ALE-AMR. Numerical experiments conducted with
the diffusion solver and associated physics packages yield 2nd order convergence in the L2 norm.
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1. Introduction
Modeling based on Arbitrary Lagrange Eulerian (ALE) hydrodynamics has a long track record of
providing valuable insights through simulation for experimental programs. For instance hydrocodes
have been used extensively at the National Ignition Facility (NIF) to model ignition target behavior
during [1] and after the delivery of laser power [2][3]. Over the years, the complexity of these codes
has grown as modeling of additional physics packages has been introduced. The computational cost of
running these simulations has also grown significantly in recent years as users of these codes run more
problems in 2D/3D with increased resolutions. Many hydrocode developers are introducing Adaptive
Mesh Refinement (AMR) to their ALE codes [4][5][6][7]. This feature has a significantly beneficial
impact on the computational cost of many simulations by enabling the user to put increased resolution
where it really matters without refining the entire domain. However, AMR increases the complexity
of the hydro implementation and complicates the introduction of physics packages. In particular most
hydrocodes include physics packages modeling heat conduction and radiation transport with the diffusion
equation. To use AMR for simulations that include these physics packages, a diffusion solver capable of
supporting AMR is needed.

Researchers have studied a variety of different approaches to solving the diffusion equation in
the context of an AMR mesh with both orthogonal [8] and non-orthogonal zones [9]. Each of
these approaches has a distinct set of advantages and disadvantages that merit consideration for their
suitability in particular simulations. For instance a finite volume approach has been proposed that has a
discretization in line with what is used by many hydrocodes, but only yields 1st order accuracy [10]. A
level based approach which solves the diffusion equations on each level and corrects the solution with



a sync solve has been studied as well, but only yields 1st order accuracy as well with ”zig-zag” errors
at the coarse fine boundary [11]. A support operator method has been proposed that shows 2nd order
accuracy in convergence studies, but has significantly angularly dependent error oscillations which may
pose problems for simulations that require high symmetry specifications [12].

In this paper we present an approach to adding new physical models using a finite element interface.
To enable this approach, we solve various problems unique to working with an ALE and AMR capable
code [13]. One such issue is that finite element methods need a global mesh with connectivity
information to operate. Typical AMR capable ALE hydrocodes are built on a structured AMR approaches
which represent all of the field variables on a level based hierarchy of data without global connectivity.
Our method constructs a mapping between a level based representation and a flattened composite mesh
representation in order to bridge this gap. All finite element matrix assembly operations can be performed
on a virtual composite mesh through this mapping. Another issue unique to this application is the
presence of arbitrary coarse-fine interfaces introduced by the AMR. Cells at these interfaces are treated
with a transition element approach that maintains continuity across the hanging nodes, edges and faces
[14].

To test these approaches we implement a nodal finite element based diffusion solver for ALE-
AMR [15]. As the name suggests, ALE-AMR is an AMR capable ALE hydrocode built on SAMRAI
(Structured AMR Application Infrastructure) [16]. Physical models for heat conduction and radiation
transport are built upon this diffusion solver. These models introduce additional difficulties as
temperature and energy in ALE hydrocodes are typically represented as piecewise constant values across
the cell, and the quantities in our FEM solver are represented as piecewise nodal bi/trilinear values
across the cell. However, good mappings between cell centered and node centered temperatures exist in
the literature [17] and are used to resolve these difficulties.

The complexity of this approach necessitates rigorous verification and validation efforts to ensure
accurate results. We apply a suite of unit tests to verify the correctness of the many finite element cases
encountered at coarse fine boundaries. We also present an L2 error analysis of the solver which displays
2nd order convergence. Additionally, we use the 2D dynamic Barenblatt [18] solution to validate the
heat conduction module, and the Su-Olsen [19] solution to validate the radiation module again yielding
2nd order convergence in the L2 norm.

2. An ALE-AMR Capable Finite Element Method
2.1. Transition Elements
In addition to the translation between field representations, a family of finite elements is required to
account for all of the cases found in the composite mesh. Standard bilinear quads in 2D and trilinear
hexes in 3D are used for elements that are not at a coarse-fine boundary. However, every possible
permutation of face refinements at coarse-fine boundaries requires a special transition element. For these
elements we use a construction approach similar to the work found in [14]. The extra nodes on the faces
due to the transition have basis functions on that face with the value reaching 1 at that node and 0 at the
other nodes on the face. In the dimension not on a transition face the basis function simply varies linearly.
The corner basis functions in our transition elements are the standard linear functions with fractions of
the new transition basis functions subtracted out in order to ensure that all basis functions are 0 at all the
transition nodes. This method of construction yields a set of basis functions that satisfies the interpolation
property and also enforces continuity across all the element faces. For example a 2D transition element
with the top and right sides refined 3:1 would yield the following basis and basis gradients (see Figure
1).
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Figure 1. An example of an element with 3:1 refinement transitions on the top and right sides. The
numbers identify the locations where the corresponding basis functions in the following basis take on a
value of 1.0 and all other basis functions take on a value of 0.0
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ALE-AMR typically employs a 3:1 refinement ratio for all AMR operations. Odd refinement ratios
are chosen to make it possible to set up an nd :1 correspondence between nodes in a fine and coarse
representation respectively. This allows exact inversion of refinement by coarsening[4]. For a given
refinement ratio there are 16 and 64 variations of transition elements in 2D and 3D respectively. Each of
these transition elements is constructed in the manner above providing a representation for every possible
combination of refined element faces.

2.2. Quadrature Rules
The FEM requires quadrature rules to approximate integrals of basis functions and their derivatives over
the elements. There are many standard quadratures for linear quad and hex elements including Gauss-
Legendre quadratures and mass lumping quadratures. However, such standard options are not readily
available for the transition elements required for AMR support. The work on transition elements in [14]
describes a compound Gauss-Legendre quadrature rule that divides the element into sub-elements and



applies the standard Gauss-Legendre quadrature to each sub-element. This provides the same integration
accuracy for the transition elements as the usual Gauss-Legendre quadrature on a standard element.

Additionally, it is desirable to have an analogue to the standard mass lumping quadrature for the
transition elements. Mass lumping quadratures place the integration points coincident with the nodes
of an element. This approach has a lower order of integration accuracy, however, the mass matrices
computed are diagonal which is useful in many situations. We construct mass lumping quadrature rules
for the family of transition elements by aligning the integration points with the element nodes and then
constraining the weights to provide first order integration accuracy and maintain the same symmetry in
the weights as the element itself. For example a 2D transition element with the left side refined would
have 6 quadrature points coincident with the 6 nodes in the element. Enforcement of the following
equation ensures first order accuracy

∑
6
i=1 wi f (qi) =

∫ 1
0
∫ 1

0 f (ξ,η)dξdη

f (ξ,η) = aξ+bη+ cξη+d
(9)

where each wi is a quadrature weight, each qi is a quadrature point, and a through d are arbitrary
constants. Additionally we ensure that the weights that are simply reflections of each other across the
bottom top symmetry line are equal. These constraints yield 6 equations too, but this linear system is
only rank 5 leaving 1 dimension of potential solutions to choose from. We choose a sensible result that
simplifies the bookkeeping for generating these weights. Applying this process to the 2D family of 16
transition elements for a refinement ratio of 3 : 1 results in the weights found in Figure 2.

These mass lumping quadrature rules are sufficient to compute mass matrices, however, they cannot
be used to compute the stiffness matrices. This deficiency arises due to the undefined derivatives at
the node locations on the transition face of an element. This problem can be overcome by averaging
the results of the derivatives taken in the limit from all directions within the element. The piecewise
definitions of the transition basis functions form distinct regions in the derivatives of those functions
separated by cut lines where no derivative exists. This allows the average limit to be computed by
averaging 2 derivative evaluations in 2D and up to 4 derivative evaluations in 3D. Thus the quadrature
points on the transition side can be split into a distinct number of quadrature points at the same location
with the derivatives evaluated in the different distinct regions adjoining that point. These ”blurred”
quadrature rules require a little extra bookkeeping in order to decide which regions are adjoining and
must be sampled, but are otherwise the same as to the usual transition element mass lumping quadrature
rules (see Figure 3).

3. An AMR Capable FEM Diffusion Solver
Using the composite mesh mapping and family of transition elements outlined above it is possible to
apply the FEM within the framework of ALE-AMR. We now turn our attention to the solution of the
following diffusion equation.

∇ ·δ∇u+σu = f (10)

We employ the standard Galerkin approach and multiply by a test function v and integrate over the the
domain Ω. ∫

Ω
(∇ ·δ∇u+σu)v dΩ =

∫
Ω

f v dΩ (11)

Continuing this approach we apply integration by parts to transform the equation to the weak form and
rearrange some terms to yield the following.∫

Ω
(σuv−δ∇u ·∇v)dΩ+

∫
∂Ω

δ∇u ·nv dS =
∫

Ω
f v dΩ (12)

Now we can approximate u and v in the basis function constructed using standard 1st order nodal
shape functions and the transition shape functions described in the preceding section. By assuming
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Figure 2. The family of 3 : 1 transition elements in 2D. Circles are placed at the locations of the element
nodes, squares are placed at the integration locations of the compound Gauss-Legendre quadrature rules,
and triangles are placed at the integration locations of the transition element mass lumping rules. The
fractions indicate the weights associated with the nearby quadrature points.

an insulating boundary conditions the boundary term is identically 0 and we have the following

u = ∑ j u jφ j
v = φi∫

Ω
(σ∑ j u jφ jφi−δ∇∑ j u jφ j ·∇φi)dΩ =

∫
Ω

f φi dΩ

(13)

where each u j is a degree of freedom and each φ j is a basis function that varies in space with local support.
Finally, linearity in the integral and differential operators allows us to factor the ∑ j u j coefficients outside
the integrals and transform to a matrix representation

Au = f
A = Mσ−Kδ

(Mα)i j =
∫

Ω
αφiφ j dΩ

(Kα)i j =
∫

Ω
α∇φi ·∇φ j dΩ

(14)

where M is the mass matrix, K is the stiffness matrix. A set of quadrature rules is needed to approximate
the integrals and construct the matrices. For the generation of mass and stiffness matrices on standard
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Figure 3. This is an example blurred quadrature rule for the 3:1 transition element with the top and
right sides refined. The dotted lines are locations where the transition basis functions have undefined
derivatives. Mass lumping quadrature would normally place points on the cut lines, so instead the blurred
quadrature splits them into 2 points placed on either side of the cut.

quads and hexes we use basic mass lumping integration rules. These quadrature rules generate an
elemental A matrices that are inverse positive. For the transition elements the transition mass lumping
quadrature and the blurred transition mass lumping quadrature rules are used for the computation of M
and K respectively also yielding inverse positive A matrices. Inverse positivity is an important property
for physical models such as heat conduction since temperatures are expected to stay above absolute zero.
The element mass and stiffness matrices are assembled into their global counterparts forming a linear
system that approximates the diffusion equation. That linear system is solved using the HYPRE [20]
GMRES solver with the Euclid [21] preconditioner.

4. Heat Conduction and Radiation Transport Modeling
Now that we have a diffusion equation solver, both heat conduction and radiation transport can be
modeled with relative ease. Heat conduction can be modeled with the dynamic diffusion equation

Cv
dT
dt = ∇ ·D(∇T )−αT (15)

where Cv is the specific heat, T is temperature, D is the heat conductivity, and α is the absorptivity of the
medium. This equation is time evolved implicitly yielding

Cv
T n+1−T n

∆t = ∇ ·Dn∇T n+1−αT n+1

δ = Dn

σ = −α− Cv
∆t

f = −Cv
∆t T n

(16)

where δ, σ, and f are the static diffusion equation parameters from (10). This allows us to compute the
solution to T n+1 from T n on an AMR hexahedral mesh by applying diffusion solver constructed above
to set up and solve a matrix equation.

Similarly radiation transport can be modeled in the diffusion approximation as follows

dER
dt = ∇ ·λ( c

κr
)∇ER +κpc(B−ER)

Cv
dT
dt = −κpc(B−ER)

(17)

where ER is the radiation energy represented at the nodes, λ is a function used to impose flux limiting on
the diffusion approximation, c is the speed of light, κr is the Rosseland opacity, κp is the Planck opacity,



and B is the blackbody intensity. These equations are implicitly time evolved yielding
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where κ̃p is a modification to Planck opacity which is used to linearize the equation similar to that found
in [22] (see Section 6). Again this allows us to time advance both ER and T on an AMR mesh by using
the FEM diffusion solve described above.

After ER and T are evolved through the above equations, the material temperatures and energies
must be updated to reflect the changes. However, in ALE-AMR like in many hydrocodes the material
temperatures and energies are represented at the cell centers and not the nodal locations which are being
updated by these heat conduction and radiation transport models. Thus, to couple these physics modules
into ALE-AMR we need a method to map variables from nodes to cell centers and back. We utilize the
method described by [17] in which changes in temperature are mapped between nodes and cells. This
approach defines projection integrals that map cell centered fields to nodes and node centered fields to
cells as follows

Ui = Fcell→node(Ucells) = ∑cUc
∫

Ωc
φidV

Uc = Fnode→cell(Unodes) =
∫

Ωc ∑iUiφidV
∫

Ωc
dV (19)

where i and c are the node and cell indices respectively for the generic field quantity U . At the end of the
hydro step the difference in cell temperatures is computed.

∆Tc = T n+1
c −Fnode→cell(T n

i ) (20)

Using this temperature cell difference and specific heat capacity obtained from an EOS Cv,c an energy
difference and specific heat on the nodes is computed

∆ei = Fcell→node(ρCv,c∆Tc)
Cv,i = Fcell→node(ρCv,c)

(21)

which are used to update the nodal temperature to the post hydro step time.

T ∗i = T n
i +∆ei/Cv,i (22)

In some cases this process can create unphysically extreme temperatures that are filtered out using the
minimum and maximum temperature values found in the surrounding pre-mapped nodes. This filtering
procedure does not upset energy conservation because it only affects the pre-diffusion nodal temperatures
and only the post-diffusion differences are captured for mapping to cells [17].

T ∗i = max[Ti,min,min(Ti,max,T ∗i )] (23)

The heat conduction and radiation transport models are then applied to update T ∗ and ER to the n+ 1
time. Finally, the changes in the nodal temperature must be mapped back to the cells and used to update
the internal energy of the cells as follows.

∆T ′c = Fnode→cell(T n+1
i −T ∗i )e

n+1
c = e∗c +Cv,c∆T ′c (24)

These difference mappings make it possible to transfer energy between nodes and cells without
introducing large amounts of artificial diffusion. Applying the mappings to the transition elements at



coarse fine boundaries is straightforward. The extra nodes in the transition elements simply add extra
values and basis functions to sum over in (19). The integrals are evaluated using the Gauss-Legendre
quadratures and their compound extensions previously discussed.

It should be noted that these solutions are implicit in nature and have no convergence limits on time
step. However, non-linearities introduced into the diffusion coefficient due to temperature dependence
in the equations of state can cause the accuracy of the method to plummet if time steps are too large
and cause large changes of temperature in a single step. We limit our time steps based on the maximal
expected change in energy in a single time step. We only allow time steps large enough to change energy
by some fraction, usually within 0.05−0.1.

5. Verification and Validation
5.1. Unit Testing
There are many variations of transition elements and quadrature rules used in this method. This
significantly complicates the development of the code to represent them and increases the chance of
introducing errors. Given such issues, we believe it prudent to do verification work to provide confidence
in this new code. The approach we take is to provide a suite of unit tests that ensure various properties
known about our finite elements and their quadrature rules for every element type in the family of
transition elements. For the transition elements we test the interpolation property and the values of
the basis function gradients at the center of the cell. We also ensure that the quadrature rules have all
positive weights and that the sum of the weights of each quadrature rule is 1. Also, we test the transition
elements together with the quadrature rules by forming element mass matrices on random elements and
ensuring that they are all diagonal. Finally, we test the inverse positivity of the dynamic diffusion operator
αM +K by forming these element matrices on high aspect ratio zones and ensuring that the operator is
an M-matrix. Executing these unit tests gives us confidence that the transition element code that we have
constructed operates according to design. The unit tests are also very useful when changes are made
to the code, as they catch errors that cause one or more of the tests to fail and provide clues about the
problem.

5.2. Static Diffusion Error Convergence
The static diffusion solver introduced in Section 3 relies on some unique approaches with untested
accuracy. As such, it is important to measure the convergence rate of the solver to make sure it is in
line with the 2nd order convergence expected from a linear FEM solution of the diffusion equation. We
measure the convergence rate of this solution using a standard L2 error convergence test on the following
Laplace equation.

∇2u = 0 on Ω = {0≤ (x,y)≤ 1}
u(x,0) = x
u(x,1) = 1− x
u(0,y) = y
u(1,y) = 1− y

(25)

A random mesh is generated with the right side refined using a ratio of 3:1 in order to test the transition
elements (see Figure 4). The entire random mesh is then refined 3 more times yielding a total of 4
meshes. Each of these meshes is used to approximate the solution to a the simple Poisson problem
defined above. These approximations are then compared to the analytical result to obtain the L2 norm of
the error. The slope of 2 in the error norms, shown in the results Figure 4, indicates that the method has
2nd order convergence. This is in line with the convergence rates of the other methods in ALE-AMR.

5.3. Dynamic Heat Conduction Results
The integration of the heat conduction into ALE-AMR relies on another new technique. The cell/node
mapping approach mentioned above has been utilized before, but not in combination with the transition
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Figure 4. Convergence test of a Poisson problem on a randomized mesh with transition elements. The
meshes displayed are the first two meshes used in the convergence test. The asterisks on the plot indicate
the L2 errors of the Poisson solution on each of the 4 successive meshes. The line fit has a slope of 1.95
indicating 2nd order convergence to the exact solution.

elements and quadrature rules outlined previously in this paper. It is also useful to examine the behavior
of the solver with non-linearities introduced into the diffusion coefficient. For these reasons we present
validation work with the Barenblatt problem [18] in 2D. This problem begins with a non-zero energy
inserted into a single point in a background of zero-energy. The material is an ideal gas with constant
specific heat and a conductivity model of the following form

D = d0ρaT b (26)

where d0, a, and b are parameters of the model. In the simulation we insert the non-zero energy in
to the bottom left cell of the domain and avoid reflections off the top and right boundaries by using a
large domain. In particular we use an 81x81 uniform mesh to model a 3cmx3cm domain. The boundary
conditions are all Neumann type which introduces quarter plane symmetry at the lower left corner. Aside
from the aforementioned hot spot, the field begins with a uniform temperature of 0K and a density of
1g/cm3. The energy in the hot spot is allowed to diffuse through heat conduction for 1µs and the results
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Figure 5. On the top are the results of the ALE-AMR simulation of the Barenblatt problem with b = 3
and an energy change limit of 0.8. The simulated results are quite well converged with the exact solution.
The L2 errors for the results on the mesh lines and diagonally across the zones are 0.0078 and 0.0084
respectively. On the bottom are the relative L2 error measurements for the b = 1 and b = 3 case as a
function of the fractional energy change limit for ∆t. Even with a large energy change limit of 0.8 the
relative error is less than 3%

of such simulations are compared to the exact results found in [18]. For these simulations we set the
conductivity parameters to the following constants: d0 = 1.0, a = 1, and b = 1 or 3. We limit the time
step by a maximum energy change fraction in any cell which we vary from 0.05 to 0.8 in numerous
simulations. The results of these simulations are found in Figure 5.

Additionally, we are interested in the AMR performance of the heat conduction module. We run
simulations of the Barenblatt problem similar to those above in order to measure the AMR performance.
These simulations use the same 3cm square domain, and at the finest level the mesh has 243x243
elements. In one case we add a coarser level and allow the AMR to coarsen the mesh in places where



the second differences of the cell energies are low, and in the other case we maintain the fine zones
throughout the mesh. This process occurs at every time step so the mesh is coarsened and refined based
on our energy criterion. We set the conductivity parameters to d0 = 1, a = 1, and b = 3, and we use the
large energy change limit of 0.8. The relative L2 error is computed for each simulation and the wall clock
simulation time is recorded. We report the results of this procedure in the following table. The recorded

num. levels rel. L2 err. wall clock time (s)
1 0.008 1840
2 0.009 755

Table 1. AMR performance for the Barenblatt problem. Enabling a second AMR level in the problem
reduces the wall clock time by a factor of 2.5x while maintaining similar error levels.

values show that enabling 2 levels with AMR yields a 2.5x performance improvement in this case with
small loss in solution accuracy. The results of all the Barenblatt simulations indicate that the diffusion
solver has reasonable levels of accuracy for large time steps and good AMR performance. As such, this
heat conduction implementation is a good choice for use in ALE-AMR and other ALE hydrocodes like
it.

5.4. Dynamic Radiation Results
We are also interested in modeling radiation transport with the diffusion equation. As is the case with
the heat conduction modeling, the radiation diffusion implementation also requires cell/node mapping of
temperatures. Additionally, this implementation introduces radiation energy as a new nodal field variable.
Since this radiation energy is a per volume quantity, special care must be taken to update the nodal values
during the Lagrange and remap ALE steps. Time steps are set to limit the maximum fractional energy
change, but they also must be limited in order to avoid overstepping the radiation/thermal temperature
equilibrium that the equations (17) represent. Finally, many radiation diffusion problems require mixed
boundary conditions which are treated with special boundary elements in our diffusion solver.

We test the implementations of these unique attributes with the classic Su-Olsen solution [19] to the
Marshak diffusion problem. A pseudo-1D simulation is enabled by using a 2D domain and applying
Neumann boundaries at the top and bottom. In particular we use a 5cm domain with uniformly sized
elements ranging from 0.025cm to 0.1cm in 4 different simulations. The simulations are run with
the retardation parameter ε = 1 and terminated at the dimensionless time τ = 1. The results of these
simulations are compared with the benchmark results listed in tables found in [19], and a refinement
study is included in the following Figure 6. The slope of the line in the refinement study indicates 2nd
order convergence as expected.

6. Conclusions and Future Work
We have presented and implemented an approach to adding heat conduction and radiation transport
physics packages to an AMR capable ALE hydrocode. These capabilities are built on an AMR enabled
FEM diffusion solver that we designed for this purpose. This diffusion solver was shown to have 2nd
order convergence. Also, we ran test problems with the heat conduction and radiation transport modules.
The performance in these test problems indicated 2nd order convergence to analytic solutions. Finally
our implementation showed significantly improved performance with AMR enabled.

There are two avenues of future research that we believe would be particularly fruitful. The first,
and more straightforward, of the avenues would be to use the existing transition element and composite
mesh FEM framework to solve other equations that represent interesting physics. For instance building
a biharmonic equation solver on this framework would be a reasonable approach for modeling of surface
tension effects in an ALE code with AMR. The second, more fundamental, avenue of research would be
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Figure 6. On the top are the results of ALE-AMR simulations of the Su-Olsen problem with ε = 1,
τ = 1, and 2 different resolutions. The circles on the plot represent the analytical values obtained from
the Su-Olsen paper. On the bottom is the L2 error as a function of resolution. The asterisks represent
the L2 error values obtained with simulations on successively refined meshes, and the line represents the
best fit to those points. The line fit slope of 2.19 indicates 2nd order convergence.



to broaden the family of transition elements to include edge-based and face-based basis function. This
would open up a path to AMR for finite element based models that use edge-based and face-based basis
functions such as those found in computational electromagnetics.

Appendix
Linearization of Blackbody Intensity
The equations representing diffusion based radiation transport have a nonlinearity in the matter-radiation
energy coupling terms that require special attention. This is easily seen with the 4th order dependence in
the following temperature update equation.

Cv(T n+1−T n) = −∆tcκp(Bn+1−En+1
R )

Bn+1 = 4σsb
c (T n+1)4 (27)

The equations in (18) include the following linearization of the blackbody intensity which eliminates the
need for nonlinear iterations. The fundamental approximation in this procedure is to hold the derivative
of the blackbody intensity with respect to temperature constant over the course of the time step, thus:

dBn+1

dT ≈ dBn

dT = 16σSB
c (T n)3

Bn+1 ≈ 1
4

dBn

dT T n+1 (28)

By applying this approximation to (27) and solving for T n+1 the following results.

T n+1 ≈ CvT n+∆tcκpEn+1
R

Cv+
1
4

dBn
dT ∆tcκp

Bn+1 ≈ 4CvBn+ δBn
δT ∆tcκpEn+1

R

4Cv+ dBn
dT ∆tcκp

(29)

Finally, we can use this approximation for blackbody intensity to write the linearized form of the
radiation-matter coupling term.

∆tcκp(Bn+1−En+1
R ) ≈ ∆tcκ̃p(Bn−En+1

R )

κ̃p =
4Cvκp

4Cv+
dBn
dT ∆tcκp

(30)

By applying this procedure we have removed the 4th order dependence on the current temperature and
eliminated the need for a computationally expensive nonlinear iteration. It is also worth noting that by
using this approach in the limit of large ∆t, the matter and radiation energies approach equilibrium with
Bn+1 = En+1.
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